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EXECUTIVE SUMMARY 

Aquatic invasive species (AIS) have significant negative impacts on lake ecosystems, underscoring the need for 

improved detection and management. The Adirondack Park Invasive Plant Program (APIPP) is dedicated to 

minimizing the impacts of invasive species in the Adirondack region, including those found in lakes. However, on-

the-ground monitoring efforts conducted by APIPP are time- and resource-intensive. Statistical models could 

optimize monitoring efforts by targeting areas of likely AIS presence both within and across lakes. Recent 

advancements in satellite-based technology and machine learning algorithms present a promising pathway to 

model and predict intra-lake characteristics and likelihood of invasion. 

The goals of this project were to train a statistical model to predict AIS presence within lakes in the Adirondack 

Partnership for Regional Invasive Species Management (PRISM) and to develop a web-based interactive map 

displaying areas of likely AIS presence or vulnerability. To achieve these goals, a large spatial dataset was 

created that included areas of mapped AIS locations, sonar-derived lake conditions (depth, hardness, and plant 

biovolume), proximity to anthropogenic points of interest (e.g., boat launches, beaches, campsites), and adjacent 

land cover. Then, three statistical models were tested head-to-head to determine the model that best predicted 

AIS presence. These models included a linear regression, a tree-based machine learning model, and an artificial 

neural network. The machine learning model (XGBoost) had the best model performance, correctly predicting AIS 

presence in ¾ of locations within the lakes with known AIS coverage. The most important predictor variables were 

proximity to plant biovolume, shoreline, forested land cover, impervious land cover, and agricultural land cover. 

However, the inclusion of biovolume as a predictor variable provided only a marginal increase in model 

performance while representing a large investment to acquire sonar data. Therefore, the final model predictor 

variables included only proximity to shoreline, forest, impervious cover, and agriculture, which provided the added 

benefit of national-scale data availability.  

The model revealed that AIS cover was most likely in areas close to the shoreline (0-200 m), in areas 200 and 

500-750 m from forested land cover, in areas with 0% or ~50% impervious cover in the immediately adjacent 

zone, and in areas with 0% and 10% agricultural cover in the immediately adjacent zone. Predicted AIS 

probability was not linear across the range of a given predictor variable, highlighting the usefulness of using 

machine learning models to characterize the relationships. Moreover, each 10x10 m “pixel” within a lake was 

assigned a probability of AIS presence, enabling mapping of AIS likelihood and vulnerability across the study 

lakes to inform monitoring efforts. 



 

 

The model was applied to thousands of lakes in the Adirondack PRISM, enabling the creation of a predictive 

gridded heat map that displays areas of likely AIS coverage or vulnerability to future invasion in areas that have 

not been monitored previously. The map is published online as an interactive tool to enable APIPP, monitoring 

groups, stakeholders, and the public to explore AIS predictions in lakes across the Adirondack region. 

 

The development of models to predict locations within lakes that are likely areas of AIS or are vulnerable to future 

AIS invasion represents a novel advancement at the intersection of statistical modeling, environmental big data, 

and lake management. Results of this work will enable prioritization of monitoring efforts for early detection 

surveys and other mitigation measures as well as serve as an invasive species communication tool for 

stakeholders and the public in the Adirondack region. 

  

https://tt-mmi.maps.arcgis.com/apps/dashboards/259bfb935d034dbba96332579f939a5b
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ACRONYMS/ABBREVIATIONS 

Acronyms Definition 

ADK  Abbreviation for Adirondack 

AIC Akaike Information Criterion 

AIS Aquatic Invasive Species 

APIPP Adirondack Park Invasive Plant Program 

AUC Area Under the Curve 

CART Classification and Regression Trees 

LASSO Least Absolute Shrinkage and Selection Operator 

NLCD National Land Cover Database 

NY DEC New York Department of Environmental Conservation 

PCA Principal Component Analysis 

PRISM Partnership for Regional Invasive Species Management 

TNC The Nature Conservancy 

 

 



 

 

1.0 INTRODUCTION 

The Adirondack Park Invasive Plant Program (APIPP), a program of The Nature Conservancy (TNC), is one of 

eight Regional Invasive Species Management Partnerships across New York and is chiefly concerned with 

protecting the Adirondack region from negative impacts of invasive species. To achieve this, APIPP collects a 

range of spatial data on the presence, location, and percent cover of aquatic invasive species (AIS) in Adirondack 

Lakes, as well as other data including sonar and other manmade features. Presently, APIPP estimates that 

approximately 25% of the 100 sampled Adirondack Lakes have AIS presence. Previous efforts linked landscape 

variables to predict which lakes are most vulnerable to AIS invasion (Shaker et al. 2017). This work found that 

lakes most vulnerable to AIS invasion were lakes with more highly developed catchments, those located nearer to 

other invaded lakes, and those associated with recreation activities such as game fishing. Alternatively, lakes 

associated with less AIS were those at higher elevation, those with forested catchments. 

Although advancements have been made to understand the factors dictating vulnerability and invasion patterns 

across lakes, understanding the spatial heterogeneity and predicting invasion patterns within lakes remains a 

challenge. On-the-ground monitoring can be costly in terms of time and resources, so optimizing monitoring time 

by targeting likely vulnerable areas of lakes could be beneficial for lake management programs. Recent 

advancements in satellite-based sensors, spatial and temporal resolution of remote sensing tools, and machine 

learning algorithms present a promising pathway to model and predict intra-lake characteristics and likelihood of 

invasion. The development of models to predict locations within lakes that are likely areas of AIS or are vulnerable 

to future AIS invasion represents a novel advancement at the intersection of statistical modeling, environmental 

big data, and lake management. Moreover, results of this work will enable prioritization of monitoring efforts for 

early detection surveys and other mitigation measures.  

The overarching goal of this work was to develop accurate predictions of AIS across lakes in Adirondack Park. 

Objectives of this work were to: 

1. Acquire and compile data sources that are potentially predictive of AIS  

2. Develop and calibrate a modeling framework to accurately predict AIS cover within lakes where AIS 

coverage is known 

3. Apply the predictive model to a broader suite of lakes to predict areas of AIS establishment or 

vulnerability where AIS coverage is unknown 

4. Create an intuitive, easy to follow graphical user interface enabling users to explore gridded heat maps 

depicting AIS invasion likelihood and areas of mapped AIS coverage 

 

  



 

 

2.0 METHODS 

2.1 DATA COMPILATION 

Data were acquired from various sources, comprising parameters that were evaluated by the research team as 

potential predictors of AIS habitat suitability. Data sources are described in Table 1. The goals of this project were 

distinct from determining how likely a given lake is to be invaded, which has been addressed in previous work 

(Shaker et al. 2017). Therefore, variables were targeted as those that corresponded to individual locations within 

lakes rather than those that corresponded to the lake as a whole. Some landscape variables, such as land use 

variables, were made more spatially explicit by incorporating “distance to” metrics and “focal” metrics of density 

near each location. These metrics also helped to account for spatial autocorrelation in the dataset, as models 

without spatial structure assume that each location is independent of other adjacent locations. The spatial 

resolution of each location (i.e., pixel size) was selected as 10x10 m; this decision was driven by the desire to be 

as spatially explicit as possible while considering the maximum resolution of each of the datasets and minimizing 

downsampling error. Relevant spatial resolutions from the datasets that contributed to this decision were National 

Hydrography Dataset data at 30 m resolution and BioBase data at 5 m resolution. Data were processed 

performed using ArcPRO 3.1 and Python 3.8.  

AIS presence and absence data for 73 species were collected from New York State’s iMapInvasives data layer, 

aided by a custom download by the New York Natural Heritage Program given the large size of the dataset. From 

the initial list of species, animals of interest were restricted to completely or mostly sessile organisms (e.g., 

mussels), leaving out organisms whose spatial location varies substantially (e.g., waterfleas, crayfishes, turtles, 

fish). APIPP provided further feedback on species of interest for management purposes (n = 16 species, four of 

which were designated as motile). The species of interest were divided into four major groupings: overall AIS (n = 

12 species), AIS plants (n = 8 species), AIS animals (n = 4 species), and AIS plants with high data richness (n = 5 

species). Modeling was conducted primarily on the AIS plants with high data richness (i.e., Eurasian Watermilfoil, 

Curly Pondweed, European Frogbit/Common Frogbit, Variable Watermilfoil/Broadlead Watermilfoil, and Water 

Chestnut) because the high data density is likely to lead to better model output and these taxa are most likely to 

be easily identified in future monitoring efforts. Land cover metrics, generated from the National Land Cover 

Database (NLCD), were aggregated as defined in Table 2. Additional details on the points of interest are provided 

in the Appendix. 

 

Table 1. Data sources, variables, and descriptions for lake metadata, AIS, and in-lake and landscape predictors. 

Data Type Data Source Variables Notes 

Lake 
metadata 

APIPP 

Lake Name 

County 

Year of survey 

Binary presence/absence of AIS 

Binary presence/absence of BioBase 
data 

Lake-scale data 

Surveys conducted 2018-2021 

166 lakes had BioBase data 



 

 

Data Type Data Source Variables Notes 

AIS data 
NY State 

iMapInvasives 

AIS presence/absence 

AIS species 

Contained point, line, and 
polygon features. Point and line 
data were converted to polygons 

by assigning a buffer of 30 m. 

In the event of multiple sampling 
events, the most recent 

observation was selected. 

Sonar-derived 
data 

BioBase 

Depth 

Hardness 

Biovolume 

 

Points of 
interest 

NY DEC 

ADK Atlas 

APIPP 

Group 1: Distance to impervious 
anthropogenic sources 

Group 2: Distance to camping 

Group 3: Distance to pervious 
anthropogenic sources 

Group 4: Distance to parking lot 

Group 5: Distance to fishing location 

Group 6: Distance to marina 

Group 7: Distance to hand boat launch 

Group 8: Distance to trailer boat launch 

Group 9: Distance to beach 

Parameters had overlap between 
NY DEC and ADK Atlas. A single 

points of interest layer was 
created by combining these two 

data sources. 

Parameters were grouped based 
on common characteristics. Tetra 

Tech developed the groupings 
with APIPP guidance. 

Where polygons were specified, 
we maintained those extents. 

When a point was specified, a 15 
m buffer was applied. 

 

Adjacent 
landcover 

NLCD 

Distance to natural 

Distance to impervious 

Distance to agricultural 

Distance to wetland 

Distance to forest 

Density of natural cover in vicinity 
around pixel (120-m grid)  

Density of impervious cover in 
vicinity around pixel (120-m grid)  

Density of agricultural cover in 
vicinity around pixel (120-m grid)  

Density of wetland cover in vicinity 
around pixel (120-m grid)  

Density of forest cover in vicinity 
around pixel (120-m grid)  

Hereafter called “Distance to” and 
“Focal” metrics 

Miscellaneous Calculated 
Binary shoreline  

Elevation 
 



 

 

Table 2. Land cover classes calculated from NLCD. 

Land Cover Metric National Land Cover Classes 

Natural 
Barren Land/Deciduous Forest/Evergreen Forest/Mixed 

Forest/Shrub/Scrub/Herbaceuous/Woody Wetlands/Emergent 
Herbaceuous Wetlands 

Impervious 
Developed, Open Space/Developed, Low Intensity/Developed, 

Medium Intensity/Developed, High Intensity 

Agricultural Hay/Pasture/Cultivated Crops 

Wetland Woody Wetlands/Emergent Herbaceuous Wetlands 

Forest Deciduous Forest/Evergreen Forest/Mixed Forest 

 

Macrophyte biovolume was incorporated as a potential predictor variable for AIS. Biovolume is inherently not 

independent of AIS, given that the AIS species of interest are macrophytes. However, exploratory analysis 

indicated that biovolume proportion cover and AIS presence did not have a strong relationship (Figure 1), which 

may suggest that areas within lakes that are conducive to macrophyte growth may be similar for both native and 

invasive species. Further, TNC was interested in evaluating whether collecting biovolume data is useful in 

determining lake vulnerability to AIS invasion. For these reasons, biovolume was retained as a predictor of 

interest but derived “distance to” and “focal” metrics for this variable to account for potential spatial autocorrelation 

between biovolume and AIS presence. The best fit model was run with and without the biovolume predictors to 

determine the importance of biovolume as a predictor; this may be a useful piece of information for TNC to inform 

future monitoring efforts and investment in BioBase data collection. 

 

Figure 1. Biovolume in relation to AIS presence and absence. 



 

 

The dataset includes data across entire lakes, which in some cases includes deeper depths that are not suitable 

for macrophyte growth. In order to provide the model with relevant sampling areas, an upper depth cutoff was 

explored. One spatially explicit option would be to use biovolume data to establish an occupancy depth for each 

lake. However, this may result in the model receiving variable maximum depths by lake, which would lead to 

difficulty in establishing the potential impact of depth on AIS presence. Rather, a uniform depth cutoff was 

generated for consistency across the dataset, with the caveat that this depth cutoff could be over- or 

underestimated for a given lake. To choose a depth cutoff, AIS presence/absence data were examined across 

depths. This pattern showed variable AIS coverage across depths, with AIS presence leveling off at a low value 

beyond 8 m depth (Figure 2). Therefore, a depth cutoff of 7 m (23 ft) was implemented as the upper bound for 

modeling. 

2.2 EXPLORATORY ANALYSIS 

We evaluated correlations among predictor variables and dimension reduction analysis on the predictors to 

explore the relationships among predictors and potentially inform feature selection. This exploratory analysis was 

evaluating using correlation coefficients and principal component analysis (PCA). This analysis allowed for the 

evaluation of variables that covaried across the dataset as well as evaluate the multivariate distributions of 

observations that made up the model training, testing, and application groups to determine how well their 

distributions overlapped. Exploratory analysis was conducted in R (R Core Team 2022). 

2.3 MODEL TRAINING, TESTING, AND SELECTION 

The general modeling goal was to predict the presence or absence of AIS (binary response variable) using a 

combination of several predictor variables. The AIS dataset of interest was AIS plant species with high data 

richness (i.e., Eurasian Watermilfoil, Curly Pondweed, European Frogbit/Common Frogbit, Variable 

Watermilfoil/Broadleaf Watermilfoil, and Water Chestnut). Modeling was conducted using a tiered approach that 

tested the performance of three models against each other, ranging from linear models to complex machine 

learning approaches. The three models tested were a linear regression, a tree-based machine learning model, 

and an artificial neural network. These models vary in their assumptions, degree of complexity, ease of use, and 

interpretability. Comparing these models head-to-head allowed for evaluation of the best-performing model 

structure.  

Figure 2. Water depths in relation to AIS presence and absence. 



 

 

The linear model consisted of a logistic regression, which predicts a binary (i.e., presence/absence) response 

from a set of predictors. To enable model selection, we used LASSO (Least Absolute Shrinkage and Selection 

Operator; Tibshirani 1996) regression. LASSO is a shrinkage method, meaning it receives an inclusive list of 

predictor variables and selects a subset of those predictor values by shrinking the non-subsetted predictor 

coefficients to zero. To assign coefficient values, LASSO attempts to minimize the sum of squared residuals while 

penalizing for coefficients with larger magnitudes. This penalizing encourages coefficients that are smaller in 

magnitude, hence the term “shrinking.” LASSO presents several benefits over other methods. Stepwise selection 

methods such as forward or backward selection via Akaike Information Criterion (AIC) may not select the best 

combination of predictors if predictors are correlated. Ridge regression is similar to LASSO, though it does not 

shrink predictor coefficients to zero and is thus not a true model selection method.  

Skewed predictor variables were square-root transformed to approximate a normal distribution, where 

appropriate. LASSO has one hyperparameter for tuning (the shrinkage parameter). LASSO was tuned across a 

grid of shrinkage values using 10-fold cross validation on the training dataset. The shrinkage value producing the 

minimum model deviance was identified. To account for random splits, this process was repeated 20 times. The 

mean of those 20 values was the final shrinkage value.  

Decision tree-based machine learning models use a tree-like structure that sequentially selects features (predictor 

variables) that are predictive of the response, with each “node” of the tree producing a split that grows the tree at 

each subsequent level. Common tree-based models include random forest and classification and regression trees 

(CART). Gradient boosting (Friedman 2001) decision tree algorithms are similar to a CART model but place more 

importance on mis-classified observations, thereby attempting to concentrate model improvements on areas 

where the existing trees perform poorly. These algorithms have begun to dominate the machine learning space 

for their speed and predictive capabilities relative to other algorithms. A recent advance in this space has been 

the creation of GPBoost (Chen and Guestrin 2016), an algorithm that combines gradient boosting decision trees 

with Gaussian process models, which are often used to model spatial data. While GPBoost appeared to be an 

ideal model structure for this dataset, the algorithm is very new and has not been optimized for datasets larger 

than a few thousand data points. Given the limitations of processing time, we opted to use XGBoost, a similar 

gradient boosting method that does not use a Gaussian process. 

The XGBoost model was calibrated, or hypertuned, on the training data to optimize model performance while 

avoiding overfitting. The following parameters were tuned during calibration. We used a deterministic grid search 

followed by k-fold cross validation that tuned the following parameters: 

• Number of boosting iterations (trees) 

• Learning rate 

• Maximum tree depth 

• Minimum samples per leaf 

• Number of leaves 

• Learning rate 

Neural networks use a series of processors operating in parallel and arranged in layers. The first tier receives the 

predictor variables, and then the model creates successive tiers where the predictor data is manipulated and fed 

into the next successive tier. The last tier produces the response prediction (probability of AIS presence). Neural 

networks capitalize on all available predictor variables, unlike modeling methods that perform feature selection. 

To calibrate model parameters, a calibration algorithm was run iteratively to test all possible combinations of 

parameters and their values, with the result being the optimized model. Parameters tuned for the neural network 

included: 

• Batch size  

• Epochs 



 

 

• Learning rate  

• Momentum  

• Neuron activation function  

• Dropout percentage  

• Dropout weight  

• Number of neurons in hidden layer  

The dataset was divided into training and testing portions using an 80:20 random split. Because pixels within a 

given lake may not necessarily be independent of one another, we grouped the training/testing data at the lake 

level (i.e., a given lake only appeared in the training or testing dataset, never both). The initial training/testing split 

was identified randomly and was refined to ensure representative assignment by location, sampling intensity, and 

size. Lakes that were substantially hydrologically connected (e.g., chains of lakes, “upper” and “lower” lake bays) 

were assigned into the same group. The overall prevalence of AIS presence in the dataset was low (8.6%), and 

this can cause issues for evaluating model fit (i.e., if the model always predicts AIS absence, it will be correct 

>90% of the time). Therefore, so we further sub-sampled the training/testing dataset so that a 50:50 

presence:absence ratio was obtained.   

In exploring AIS spatial distributions across lakes, we found that some lakes had detailed spatial mapping of AIS, 

most often as polygons. Some other lakes had the entire lake marked as having AIS cover or marked AIS 

coverage as points. This is a result of the AIS database containing data collected by TNC as well as citizen 

groups, the latter of which may submit non-spatially detailed AIS information. An example of Upper and Lower 

Chateaugay Lakes illustrates spatially detailed mapping of AIS, and an example of Indian Lake illustrates AIS 

marked as points (Figure 3). To further refine the dataset, a subset of lakes was identified as having spatially 

detailed mapping and were used in model training and testing. This refinement adjusted the number of lakes in 

the training/testing dataset from 58 lakes to 42 lakes. 33 lakes were designated as training lakes, and 9 lakes 

were designated as testing lakes (Figure 4). The number of pixels for each group was 53,682 for training and 

19,408 for testing. The same set of training/testing lakes and pixels was used across all models to enable direct 

comparison. 

Figure 3. Examples of AIS marked as spatially detailed polygons (left; Upper and Lower Chateaugay Lakes) 

and as points (right; Indian Lake). 



 

 

Across all models, performance was lower than anticipated. Given the vetting and refinement of the predictor and 

response dataset, we ruled out that model performance could have been impacted by low quality input data. 

Another possible interpretation is that statistical models may become “confused” by predictor variables that have 

inconsistent and competing information. We pursued an additional model selection approach on the best-

performing model called feature selection, which consisted of an algorithm that cycles through every possible 

subset of predictor variables and finds the number and combination of predictors that results in the best model fit.  

Model output included a predicted probability of AIS presence for each pixel. Predicted probabilities >0.5 were 

assigned as present, and probabilities <0.5 were assigned as absence. The following performance metrics were 

evaluated across models: 

• Accuracy: Ratio of correct predictions to total predictions. Used to identify overall performance of 

classification. 

• Precision: Ratio of correct present (or absent) classifications to the total number of predicted positive (or 

absent) classifications. Used to identify the correctness of classification. Evaluated separately for 

presence and absence classifications. 

• Recall: Ratio of correct present (or absent) classifications to the total number of present (or absent) 

classifications. Used to identify the sensitivity of classification. Evaluated separately for presence and 

absence classifications. 

• Area Under the ROC Curve (AUC): aggregate measure of performance across all possible classification 

thresholds. 

Figure 4. Map of model training and testing lakes. 



 

 

Each metric has a range from 0 to 1, with higher values indicating better model performance. Models were ranked 

based on the overall balance of model fit metrics. 

Confusion matrices were also used to interpret classification output, showing the magnitudes of true positive and 

negative predictions as well as false positives and false negatives (Table 3). In addition to using confusion 

matrices to generate model fit metrics such as accuracy, precision, and recall, we examined these matrices to 

balance modeling goals with respect to the four quadrants. For instance, TNC monitoring efforts may desire to 

minimize false negatives, where the model predicts AIS absence but the true condition has AIS presence. A false 

negative in this case may cause monitoring groups to avoid monitoring areas that have AIS presence. A false 

positive, while it could cause wasted time and effort, would be a relatively better outcome than a false negative for 

AIS monitoring and management. 

Table 3. Example confusion matrix. 

 Predicted presence Predicted absence 

Observed presence True positive False negative (type 2 error) 

Observed absence False positive (type 1 error) True positive 

 

XGBoost and neural network modeling were performed using the “XGBoost” and “sklearn” packages in Python, 

respectively. Logistic regression was conducted using R (R Core Team 2022) and the “glmnet” package 

(Friedman et. al. 2010).  

 

2.4 MODEL APPLICATION 

Model application beyond the initial set of training/testing lakes was explored based on (a) the availability of 

predictor data, and (b) the similarity of lakes in the “apply” group compared to the training and testing lakes. To 

maximize the total number of lakes for which AIS cover could be predicted while maintaining geographic 

consistency, the area within Adirondack Park plus a 10-mile buffer around the park was selected. This area 

represents the Adirondack Partnership for Regional Invasive Species Management (PRISM) boundary. However, 

the models used in this analysis do not enable extrapolation, so the PRISM lake dataset was trimmed to avoid 

extrapolating the model beyond the conditions for which it was trained. Lakes smaller than 5 acres were excluded 

from analysis, and the largest lakes included in the dataset were Lake George (120 km2), Great Sacandaga Lake 

(101 km2), and Cranberry Lake (28 km2). These lakes are larger than the largest lakes in the training and testing 

datasets (up to 25 km2) but were indicated as lakes of interest by TNC. Individual pixels for lakes in the apply 

group were restricted to those with predictor variable values that were within the upper and lower bounds of the 

predictor variable values in the training dataset, designated as the minimum and 99th percentile values (maximum 

was not used due to the presence of a few exceptionally high outliers). The model was applied to over 1,000 

lakes in the Adirondack Park PRISM boundary (the total count varied depending on how connected lakes and 

bays were lumped or split in the National Hydrography Dataset).  

  



 

 

3.0 RESULTS 

3.1 EXPLORATORY ANALYSIS 

Correlation plots and PCA showed that forest and natural land cover were highly correlated, focal and distance 

metrics for corresponding variables were generally correlated, the points of interest groups (numbered groups) 

were correlated, and elevation was correlated with land cover metrics (Figure 5, Figure 6).  For correlated 

variables, we expected that if one variable rose in feature importance, the other variable would fall. The model 

selection algorithms explicitly account for correlated predictors in this manner, so there was no need to remove 

potential predictor variables a priori. The PCA graph showed predictor variables occupying all four quadrants of 

principal component space for the first two principal components (x and y axes). This output indicated that the 

combination of BioBase, land cover, and points of interest data account for different aspects of variability in lake 

data across the dataset, suggesting promise for finding important statistical relationships with AIS cover. 

 

 

Figure 5. Pearson correlation coefficients among predictor variables. 



 

 

 

  

Figure 6. PCA with predictor variables shown as vectors. The first and second principal components explained 19 

and 12% of variance in the dataset, respectively. 



 

 

3.2 MODEL PERFORMANCE EVALUATION 

The neural network performed worst, followed by the LASSO logistic regression model. The XGBoost model 

performed best, and model performance improved following the feature selection process. The “best subset” 

XGBoost model was ranked first in model performance, followed by the “best subset” XGBoost model that 

excluded the biovolume metrics as possible predictors (Table 4). 

Table 4. Model performance metrics and rankings. The XGBoost “best subset” models had the best model 

performance and were explored head-to-head to determine the final model choice. 

 Accuracy Precision Recall AUC Rank 

Linear Model 
(LASSO) 

0.540 
0.54 

absent: 0.54 
present: 0.54 

0.55 
absent: 0.54 
present: 0.55 

0.617 4 

Neural Network 0.446 
0.40 

absent: 0.47 
present: 0.34 

0.45 
absent: 0.78 
present: 0.11 

0.366 5 

XGBoost:  
Naïve run 

0.565 
0.63 

absent: 0.54 
present: 0.72 

0.57 
absent: 0.92 
present: 0.21 

0.707 3 

XGBoost:  
Best subset 

0.753 
0.76 

absent: 0.81 
present: 0.72 

0.75 
absent: 0.73 
present: 0.77 

0.753 1* 

XGBoost:  
Best subset w/o 

biovolume 
0.708 

0.71 
absent: 0.71 
present: 0.70 

0.71 
absent: 0.70 
present: 0.71 

0.789 1* 

The XGBoost “best subset” model had the best model performance, and therefore the most correct predictions 
(Table 5). This model predicted 3,238 false negatives and about half as many false positives, 1,539. 

Table 5. Confusion matrix for the XGBoost best subset model. 

 Predicted presence Predicted absence 

Observed presence 6,466 (33%) 3,238 (17%) 

Observed absence 1,539 (8%) 8,165 (42%) 

The XGBoost “best subset without biovolume” model had the second best model performance, with fewer correct 

predictions than the “best subset” model (Table 6). However, this model had 312 fewer false negatives than the 

“best subset” model, while at the same time having more false positives.  

Table 6. Confusion matrix for the XGBoost best subset model without biovolume. 

 Predicted presence Predicted absence 

Observed presence 6,778 (35%) 2,926 (15%) 

Observed absence 2,737 (14%) 6,967 (36%) 



 

 

In addition, we examined the two XGBoost model subsets for their predicted probabilities. By default, the model 

defines a “presence” as any prediction >0.5 and an “absence” as any prediction <0.5. This plot showed that 

changing the threshold from 0.5 would not enhance model performance, since any adjustment to reduce false 

positives or negatives would lead to a corresponding flip from the true positive or true negative category into a 

false prediction (Figure 7).  

 

3.3 VARIABLE IMPORTANCE 

To provide insights about the importance of input variables, we examined the feature importance of variables 

selected by the models in more detail. Interpretation of predictor variables is more difficult for machine learning 

approaches such as XGBoost and neural networks than for linear regression approaches such as LASSO, 

because this “black box” model does not output model coefficients. Instead, the relative impact of individual 

variables in machine learning models can be evaluated using feature importance and partial dependence plots. 

The feature importance plots for the XGBoost best subset model (Figure 9) and the XGBoost best subset model 

without biovolume (Figure 8) show that distance to shoreline and distance to forest were both important predictors 

for the models. Focal density of biovolume was the most important predictor in the XGBoost best subset model, 

followed in order of importance by distance to shoreline, distance to forest, and distance to biovolume. For the 

XGBoost best subset model without biovolume, distance to shoreline was the most important predictor, followed 

in order of importance by distance to forest, focal density of impervious cover, and focal density of agricultural 

cover. Note that the F scores displayed are relative values intended to be compared in magnitude within an 

individual model rather than comparing values across models.  

Figure 7. Distribution of predicted probabilities for the XGBoost best subset model and the XGBoost best subset 

model without biovolume. 



 

 

Partial dependence plots show the predicted probability of AIS presence across a gradient of a given predictor 

variable. Plots for the variables in the XGBoost best subset model without biovolume are shown in Figure 10. 

Note that unlike the linear model, the probabilities across the range of a given variable need not be linear or 

directional. The partial dependence plot for distance to shoreline showed that the predicted probability of AIS was 

relatively high close to shore (0-200 m), with the predicted probability decreasing farther from shore (200-500 m). 

The predicted probability then rose again at 500 m from shore and farther, though these predicted probabilities 

were associated with a lower density of sampled points and may have been driven by a small number of large 

lakes in the training dataset. Predicted AIS presence displayed a multi-peaked relationship with distance to forest, 

with highest probabilities predicted at ~200 and 500-750 m and lowest probabilities predicted at 0 m and ~350 m. 

AIS presence had the highest predicted probabilities at 0 and 50% impervious cover in the focal area and the 

lowest predicted probabilities at 25% and >75% impervious cover. AIS had the highest predicted probability at 0% 

agricultural cover in the focal area and a decreased probability at >0% agricultural cover. 

Figure 8. Feature importance for the XGBoost best subset model without biovolume. The F score represents the 

relative importance of each variable in the model. 

Figure 9. Feature importance for the XGBoost best subset model with biovolume. The F score represents the 

relative importance of each variable in the model. 



 

 

  

Figure 10. Partial dependence plots for the four predictor variables. The blue line indicates the predicted 

probability of AIS at a given value for the predictor variable of interest, and the black points represent data in the 

training dataset (points are jittered vertically to enable visualization of multiple overlapping points). 



 

 

While the model performance of the linear model (LASSO) was worse than that of the XGBoost best subsets 

models, interpretation of the coefficients of linear models is straightforward and thus may lend insights despite the 

lackluster model performance. LASSO output indicated that the points of interest variables had the most 

predictive power of AIS (Figure 11).Variables that were strongly positively associated with AIS included distance 

to hand boat launch (group 7), distance to beach (group 9), distance to marina (group 6), and distance to 

agricultural land cover. The interpretation from this outcome is the closer a given location is to these areas, the 

lower the AIS probability. Variables that were strongly negatively correlated with AIS included distance to trailer 

boat launch (group 8), distance to fishing location (group 5), distance to impervious anthropogenic surface (group 

1). The interpretation from this outcome is the closer a given location is to these areas, the higher the AIS 

probability. 

 

 

 

 

Figure 11. Predictor variable standardized coefficients from the LASSO model. 



 

 

3.4 SELECTION OF BEST-PERFORMING MODEL 

The XGBoost “best subset” models had the best model performance. The top-performing model was one that 

included distance and focal biovolume metrics, but this model only marginally outperformed the best subset 

model that excluded biovolume. The slight improvement in model performance may not be worth the cost of 

obtaining biovolume data in terms of labor, variable data quality, and expense of service. Additionally, the 

XGBoost model without biovolume was slightly better at predicting positive AIS presence and had fewer false 

negatives, both key factors in how this model would be used to aid field surveys. Thus, the XGBoost best 

subset model without biovolume was chosen as the best-performing model.  

In addition to the metrics evaluated at the individual pixel level (Table 4), the adjacency of correctly and incorrectly 

predicted pixels to areas of confirmed AIS was also an important indicator of model performance. Pixels located 

within areas of confirmed AIS presence tended to have the highest predicted probabilities, and pixels with the 

lowest predicted probabilities were located far away from areas of confirmed AIS presence. Importantly, false 

positives tended to be located near areas of confirmed AIS cover and could represent areas with suitable habitat 

that are vulnerable to future invasion (Figure 12). 

 

 



 

 

 

Figure 12. Example model output for Lower Chateaugay Lake (top) and Chazy Lake (bottom), two lakes in the 

model training dataset. Areas with confirmed AIS presence are noted in yellow hatching, and predicted AIS 

probabilities are shown with the color scale. 



 

 

3.5 MODEL APPLICATION TO LAKES IN ADIRONDACK PRISM 

Lakes in the Adirondack PRISM boundary were associated in a similar geographic context as the testing and 

training lakes, and comparisons of the distributions for the four predictor variables also indicated similar conditions 

(Figure 13). One potential limitation was the extrapolation of the model to lakes whose areas are larger than the 

training dataset (i.e., Lake George, Great Sacandaga Lake, Cranberry Lake), so the results for these lakes should 

be interpreted with caution. The predicted probability of AIS cover in the lakes across the Adirondack PRISM 

ranged from 0-100%, with a similar interquartile range and median prediction as the training dataset (Figure 14). 

Lakes in the testing dataset tended to have narrower distributions than the training and application groups across 

most variables. 

One caveat of the model application is that the model was trained on a subset of lake pixels that were <7 m deep, 

which necessitated detailed bathymetry input data. Although depth was not chosen by the model as an important 

predictor, the lack of bathymetry data for the large majority of lakes in the Adirondack PRISM meant that the 7 m 

cutoff was unable to be applied. Therefore, AIS predicted probabilities were generated for entire lake areas and 

should be interpreted with caution and ideally alongside field-deployed depth finders if being used for monitoring 

purposes (see Figure 15 for examples). An interactive map was developed to show model results.  

Figure 13. Distributions of the four predictor variables in the XGBoost best subset model for the three lake groups. 

https://tt-mmi.maps.arcgis.com/apps/dashboards/259bfb935d034dbba96332579f939a5b


 

 

 

 

 

Figure 14. Predicted AIS probabilities across the three lake groups. 

Figure 15. Example model output for Fern Lake (left) and Newcomb Lake (right), two lakes in the model 

application dataset. Predicted AIS probabilities are shown with the color scale. Note that in the absence of 

bathymetry data, no areas of the lake were left out of the model output due to depth. 



 

 

4.0 CONCLUSION 

A modeling framework was developed to evaluate the variables and model structure that best predicted AIS 

presence within lakes in the Adirondack PRISM. To prepare for model development and calibration, a 

comprehensive database was compiled that included within-lake data (i.e., water depth, hardness, biovolume, 

and distance to shoreline) as well as adjacent land cover and anthropogenic points of interest data that may be 

relevant to AIS cover and invasion. The core lakes within this database were those that have been monitored for 

AIS cover and have also been mapped with sonar-derived variables using BioBase. The database also included 

data from lakes across the Adirondack PRISM. Multiple models were tested, including a linear model, a tree-

based machine learning model, and an artificial neural network. Model performance was tested head-to-head, 

which enabled the identification of the best model structure to predict within-lake AIS cover. The top two best-

performing models were tree-based machine learning model (XGBoost) which incorporated factors such as 

biovolume, distance to shoreline, distance to forest cover, density of adjacent impervious cover, and density of 

adjacent agricultural cover as predictor variables. While it was initially surprising that some variables were not 

important predictors of AIS (e.g., proximity of boat launches, water depth), it was hypothesized that those 

variables were collinear to some degree with the variables of highest importance. For instance, distance to 

shoreline likely accounts for some of the variability in water depth. The results of the within-lake modeling effort 

were consistent with previous efforts to predict AIS vulnerability across lakes, particularly the findings that 

development was associated with higher vulnerability and forested land cover was associated with lower 

vulnerability (Shaker et al. 2017). Ultimately, the XGBoost model that did not include biovolume variables as 

predictors was selected as the top model and was applied to additional lakes that had unknown AIS presence. 

This model was selected to build an interactive webmap of predicted AIS cover across lakes in the Adirondack 

PRISM based on performance criteria and ability to predict vulnerability across thousands of lakes in the region 

using national-scale spatial datasets. 

Evaluation of the individual model predictors on their own enabled an actionable interpretation of the importance 

of these predictors for AIS monitoring purposes. AIS presence was predicted in areas within 200 m of the 

shoreline and was more likely in areas with a high density of impervious and/or agricultural cover. Distance to 

forest was also an important predictor, with a bimodal distribution with highest probabilities predicted at ~200 and 

500-750 m from forest cover. Alongside these general predictions, the geospatial layer displaying predicted AIS 

probability across the >1000 lakes in the Adirondack PRISM enables location-specific predictions within lakes. 

While this model does not replace the need for physical monitoring of AIS, the data-enabled pairing of machine 

learning model predictions with on-the-ground monitoring efforts will allow for more efficient identification of areas 

likely to have AIS plant cover and potential areas vulnerable to future AIS plant invasion. 
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  Footer Information 

APPENDIX A: POINTS OF INTEREST METADATA 

Group 1 - Impervious Anthropogenic Sources Source 

Bakery ADK Atlas 

Cabins and Cottages ADK Atlas 

Club ADK Atlas 

Cross-Country Ski Center ADK Atlas 

Deli ADK Atlas 

Gas ADK Atlas 

Golf ADK Atlas 

Hostel ADK Atlas 

Hotel ADK Atlas 

Ice Rink ADK Atlas 

POI ADK Atlas 

Restaurant ADK Atlas 

Retail Store ADK Atlas 

Snack Bar ADK Atlas 

Summer Camp ADK Atlas 

Tavern ADK Atlas 

Theater ADK Atlas 

Vacation Rentals ADK Atlas 

Visitor Center DEC 

Observation Platform DEC 

Observation Tower DEC 

Fire Tower DEC 

Scenic Vista DEC 

Group 2 - Camping Source 

Campground boundaries/pts DEC 

Day use area DEC 

Picnic area DEC 

Picnic table DEC 

Lean to DEC 

Campground ADK Atlas 

Leanto ADK Atlas 

Group 3 - Pervious Anthropogenic Sources Source 

Ball Field ADK Atlas 

Equestrian ADK Atlas 

Public Park ADK Atlas 

Scenic Overlook ADK Atlas 

Trail Access ADK Atlas 

Equestrian Platform DEC 



 

  Footer Information 

Group 4 - Parking Lots Source 

Paved Parking Lot DEC 

Unpaved Parking Lot DEC 

Group 5 - Fishing Source 

Fishing Access Site DEC 

Fishing Pier DEC 

Fishing Platform DEC 

Fishing Access Site ADK Atlas 

Water Access ADK Atlas 

Group 6 - Marina Source 

Marina ADK Atlas 

Group 7 - Boat Launch (Hand) Source 

Hand Launch DEC 

Hand Launch ADK Atlas 

Group 8 - Boat Launch (Trailer) Source 

Ramp Launch DEC 

Trailer unimproved boat launch ADK Atlas 

Trailer Improved Boat Launch ADK Atlas 

 


